
Python Iterators

June 8, 2024

0.1 Python Iterators
Dr. Labeed Al-Saad

**An iterator is an object that contains a countable number of values.

An iterator is an object that can be iterated upon, meaning that you can traverse through all the
values.

Technically, in Python, an iterator is an object which implements the iterator protocol, which
consist of the methods iter() and next().

0.2 Iterator vs Iterable
**Lists, tuples, dictionaries, and sets are all iterable objects. They are iterable containers which
you can get an iterator from.

All these objects have a iter() method which is used to get an iterator:

Example:

Return an iterator from a tuple, and print each value:

[1]: mytuple = ("apple", "banana", "cherry")
myit = iter(mytuple)

print(next(myit))
print(next(myit))
print(next(myit))

apple
banana
cherry

Even strings are iterable objects, and can return an iterator:

Example:

Strings are also iterable objects, containing a sequence of characters:

[2]: mystr = "banana"
myit = iter(mystr)

print(next(myit))

1

print(next(myit))
print(next(myit))
print(next(myit))
print(next(myit))
print(next(myit))

b
a
n
a
n
a

0.3 Looping Through an Iterator
We can also use a for loop to iterate through an iterable object:

Example:

Iterate the values of a tuple:

[3]: mytuple = ("apple", "banana", "cherry")

for x in mytuple:
print(x)

apple
banana
cherry

Example:

Iterate the characters of a string:

[4]: mystr = "banana"

for x in mystr:
print(x)

b
a
n
a
n
a

**The for loop actually creates an iterator object and executes the next() method for each loop.

0.4 Create an Iterator
To create an object/class as an iterator you have to implement the methods iter() and next() to
your object.

2

As you have learned in the Python Classes/Objects chapter, all classes have a function called init(),
which allows you to do some initializing when the object is being created.

The iter() method acts similar, you can do operations (initializing etc.), but must always return
the iterator object itself.

The next() method also allows you to do operations, and must return the next item in the sequence.

Example:

Create an iterator that returns numbers, starting with 1, and each sequence will increase by one
(returning 1,2,3,4,5 etc.):

[5]: class MyNumbers:
def __iter__(self):

self.a = 1
return self

def __next__(self):
x = self.a
self.a += 1
return x

myclass = MyNumbers()
myiter = iter(myclass)

print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))

1
2
3
4
5

0.5 StopIteration
The example above would continue forever if you had enough next() statements, or if it was used
in a for loop.

To prevent the iteration from going on forever, we can use the StopIteration statement.

In the next() method, we can add a terminating condition to raise an error if the iteration is done
a specified number of times:

Example:

Stop after 20 iterations:

3

[10]: class MyNumbers:
def __iter__(self):

self.a = 1
return self

def __next__(self):
if self.a <= 20:

x = self.a
self.a += 1
return x

else:
raise StopIteration

myclass = MyNumbers()
myiter = iter(myclass)

for x in myiter:
print(x)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

4

	Python Iterators
	Iterator vs Iterable
	Looping Through an Iterator
	Create an Iterator
	StopIteration

